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Systematic construction of multisoliton complexes
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We present a simple but powerful method for constructing multisoliton complexes of the coupled nonlinear
Schrödinger equation. Our method is based on the Ba¨ckrund-Darboux transformation. A closed form of the
matrix determinant is given for multisoliton complexes, including the case of a nonvanishing background. We
explicitly work out the solutions of two-, three-, and four-component coupled nonlinear Schro¨dinger equations.
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I. INTRODUCTION

Recently, there has been much interest in multisoli
complexes~MSCs!. A MSC is a self-localized state, which i
a nonlinear superposition of several fundamental solito
These objects have been studied extensively both experim
tally and theoretically; see the review and references the
@1,2#. These include short pulses in multicore optical fibe
@3#, multicomponent Bose-Einstein condensates at zero t
perature@4#, and gap solitons@5#, to name a few. In particu
lar, researches on spatial incoherent solitons propagatin
photorefractive materials induced new interest in MSCs@2#.
In general, a MSC can be described by a set of coup
nonlinear Schro¨dinger equations~NLSEs!. Various solutions
to these equations, including soliton solutions@6,7# and pe-
riodic solutions, have been found@8–10#, especially for the
two-component case. Explicit solutions of equations hav
components larger than two are appearing one after ano
@2,8,11#. These solutions are mainly obtained using the f
that MSCs are stationary, which reduces the problem of
coupled NLSEs to a set of ordinary differential equations

In some special cases, like wave propagation in a ho
geneous medium having a Kerr-type nonlinear response
corresponding NLSEs are found to be integrable. They
then described by

]zck52 i ]x
2ck22i(

i 50

N

uc i u2ck , k50,N. ~1!

The simplest caseN51 ~two-component case! was known
as the Manakov equation@12,13#. The inverse scattering
method~ISM! @14# was used by Manakov for finding on
soliton solution. The ISM is a powerful tool in constructin
solitons, but the high-level mathematical technicality of t
method makes it difficult for finding more complex sol
tions; multisolitons, and/or solitons, having nonvanishi
backgrounds. Thus, most solutions of the MSC have b
constructed in the form of stationary solutions, or using
linear superposition principle@15#. Some important results
obtained in these ways are solitary waves solutions@16#,
MSC solutions of partially coherent solitons in Ref.@17#,
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MSCs on a background@18,19#, and MSCs in a sea of radia
tion modes@20#. Collisions of MSCs are also investigate
and illustrated by numerical examples@21#. The stability of
multicomponent solitary waves is studied in Ref.@22# and a
Hirota bilinear method was used to find periodic solutions
coupled NLSEs@23,24#.

These general analytical solutions were used to ob
some important characteristics of MSCs in a simple for
Due to its physical relevance, more explicit closed expr
sions of MSCs having a complex behavior should be
quired. In this paper, we present a simple, but powerful M
finding technique that would serve well for finding mo
general solutions of MSCs. The method, which is based
the Darboux transformation~DT!, uses the Crum’s formula
and avoids the stationary ansatz@25–29#. When a DT is ap-
plied once in a given starting solution, it gives a new soluti
of ~a soliton plus starting solution!. To create a MSC on a
starting solutionc (B) ~we restrict that a starting solution ha
a c0 component only!, we apply anN iteration of the DT on
c (B). In this course, we adjust that each added solitoni
51,N, has two components only,c0 andc i . The final result
is a closed determinantal form of MSC solutions in nonva
ishing as well as vanishing backgrounds. Our method app
when the coupled NLSE is integrable. Clearly, the integ
bility from the Kerr-like nonlinearity is an approximation
Nevertheless, the existence of exact solutions helps u
understand the phenomenon. The general idea should
valid for any particular nonlinearity.

We explain the method in Sec. II and give a closed fo
of the MSC forN51,3 equations in Eq.~1!. We demonstrate
the method for the completely incoherent MSCs in Sec.
Partially coherent MSCs are discussed in Sec. IV. Incohe
MSCs on a background are explained in Sec. V. The valid
of our formulas is verified independently by a computer
gebra software. An explicit result is given in the Append
which calculates MSCs,c i , i 50,2, of an N52 coupled
NLSE on a background.

II. METHOD

A. Associated linear system for a MSC

We first bring the coupled NLS equation~1! into a matrix
form in terms of (N12)3(N12) matricesE,T and Ẽ
5@T,E#,
©2004 The American Physical Society06-1
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E5S 0 c0 c1 ••• cN

2c0* 0 ••• 0

2c1* 0 ••• 0

¯

2cN* 0 ••• 0

D ,

T5S i /2 0 ••• 0

0 2 i /2 0 ••• 0

0 0 2 i /2 0••• 0

¯

0 0 ••• 0 2 i /2

D , ~2!

such that

]zE52]x
2Ẽ12E2Ẽ. ~3!

One can readily check that the components of Eq.~3! are
indeed equivalent to the coupled NLS equation in Eq.~1!
@12,28,29#. In this paper, we focus on the case when
group velocity dispersion is abnormal, or the waveguide
self-focusing. One advantage of using matrices is that we
write down the associated linear equation~Lax pair!

~]x1E1lT!C50, ~]z1EẼ2]xẼ2lE2l2T!C50, ~4!

wherel is an arbitrary complex number andC(x,z,l) is an
(N11)-component vector. What this linear equation mea
is the following: if the matrixE satisfies Eq.~3!, one can find
a nonzero solutionC by integrating Eq.~4!. On the other
hand, if there is a nontrivialC satisfying Eq.~4!, then]x]zC
should be the same as]z]xC for any value ofl, which when
coupled with Eq.~4!, requires thatE should satisfy Eq.~3!.

With this prerequisite, we now introduce the Ba¨ckrund-
Darboux transformation, in a form suiting our purpo
@26,28,29#. First, we choose a particular solution forE, E
5E(B) with c05c (B),c15•••5cN50, which later de-
scribes asymptotic backgrounds for the MSCs. For case
completely incoherent MSCs, one may simply choosec (B)

50. For cases of partially coherent~especially inc0 com-
ponent! MSCs, one can takec (B)5c (m) , wherec (m) is an
m-soliton solution of a single-component NLSE forc0. For
MSCs on a background, one may choose plane wave s
tions for c (B) which can be easily obtained.

Now, with a choice ofE from the previous step, we inte
grate the linear equation~4! for pure imaginary cases,l j
5 ib j , (b j5real j 51,N), in a form

C~x,z,l5 ib j !5S aj

bj

0

¯

cj

0

¯

D . ~5!
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Here cj lies in the j 12th row, which will add a soliton
having ac j component~as well as ac0 component through
bj ) to a starting solution using the DT. In other words,
satisfies

5 ]x1S 0 c (B) 0 •••

2c (B)* 0 •••

0 •••

¯

¯

¯

0 •••

D
1 ib jS i /2 0 ••• 0

0 2 i /2 0 ••• 0

0 0 2 i /2 0••• 0

¯

¯

¯

0 0 ••• 0 2 i /2

D6S aj

bj

0

¯

cj

0

¯

D
50, ~6!

and similarly for the]z part of Eq. ~4!. Here, we takel j

5 ib j to be purely imaginary, which makes MSCs stationa
~or moving with a certain velocity! and pulsating periodi-
cally along their trajectories. These parametersb i , i 51,N
are related to the intensities of MSC solitons.

B. Crum’s formula for MSCs

Now Crum’s formula of the Darboux transformation give
a MSC solution in terms ofai ,bi ,ci , i 51,N described in
Sec. II A as the solution of Eq.~4! or ~6!. A generalized form
of Crum’s formula for multi-component~Hermitian symmet-
ric space! NLSE was first introduced in Ref.@28#. See more
details in Ref.@29#. Define anN(N12)3N(N12) block
matrix D, which is composed ofN2 block matrix D i j such
that

D5S D1,1 D1,2 ••• D1,N

¯ ¯ ¯

DN,1 DN,2 ••• DN,N

D , ~7!

where the (N12)3(N12) block matricesDmn are given by
the product of two block matrices;
6-2



Dmn51
an 2bn* 0 ••• 2cn* 0 •••

bn an* 0 •••

0 0 1 0 •••

0 0 0 1 0 •••

¯

cn 0 ••• an* 0 ••• 2 S
~ ibn!N2m 0 0 •••

0 ~2 ibn!N2m 0 •••

0 0 ~2 ibn!N2m
•••

¯ ¯

0

D . ~8!

d
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0 ••• 1 0 •••

¯

The first matrix of the right part of Eq.~8! has four nondiagonal elementsbn , bn* , cn , andcn* which are located in the secon
row, the second column, then12nd row, and then12nd column, respectively. Explicitly,D for N52 becomes

D„NÄ2…51
ib1a1 ib1b1* ib1c1* 0 ib2a2 ib2b2* 0 ib2c2*

ib1b1 2 ib1a1* 0 0 ib2b2 2 ib2a2* 0 0

ib1c1 0 2 ib1a1* 0 0 0 2 ib2 0

0 0 0 2 ib1 ib2c2 0 0 2 ib2a2*

a1 2b1* 2c1* 0 a2 2b2* 0 2c2*

b1 a1* 0 0 b2 a2* 0 0

c1 0 a1* 0 0 0 1 0

0 0 0 1 c2 0 0 a2*

2 . ~9!

Let Qi , i 50,N be the matrix obtained by replacing thei 11st row of the matrixD with the row matrix

@~ ib1!Na1 2~2 ib1!Nb1* 2~2 ib1!Nc1* 0 ••• ~ ib2!Na2 2~2 ib2!Nb2* 0 2~2 ib2!Nc2* •••#. ~10!

Explicitly, Q0 andQ1 for N52 becomes

Q0
(NÄ2)51

ib1a1 ib1b1* ib1c1* 0 ib2a2 ib2b2* 0 ib2c2*

2b1
2a1 b1

2b1* b1
2c1* 0 2b2

2a2 b2
2b2* 0 b2

2c2*

ib1c1 0 2 ib1a1* 0 0 0 2 ib2 0

0 0 0 2 ib1 ib2c2 0 0 2 ib2a2*

a1 2b1* 2c1* 0 a2 2b2* 0 2c2*

b1 a1* 0 0 b2 a2* 0 0

c1 0 a1* 0 0 0 1 0

0 0 0 1 c2 0 0 a2*

2 , ~11!

Q1
(NÄ2)51

ib1a1 ib1b1* ib1c1* 0 ib2a2 ib2b2* 0 ib2c2*

ib1b1 2 ib1a1* 0 0 ib2b2 2 ib2a2* 0 0

2b1
2a1 b1

2b1* b1
2c1* 0 2b2

2a2 b2
2b2* 0 b2

2c2*

0 0 0 2 ib1 ib2c2 0 0 2 ib2a2*

a1 2b1* 2c1* 0 a2 2b2* 0 2c2*

b1 a1* 0 0 b2 a2* 0 0

c1 0 a1* 0 0 0 1 0

0 0 0 1 c2 0 0 a2*

2 . ~12!

Then a MSC solution for the coupled NLS equation is given by
036606-3
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c05c (B)1 i
detQ0

detD
, c i5 i

detQi

detD
, i 51,N. ~13!

For a mathematical proof of these statements, we refer
reader to the reference@28# where the proof is given in a
general context using the Darboux transformation and
generalized Crum’s formula.

C. Reduction of detD and detQi

It can be seen thatD and Qi , i 50,N are large sparse
matrices having many zeros. We find the determinants
them are reduced to more compact forms, which should
helpful for various applications. From now on, we takeb1
,b2,•••,bN without loss of generality. We first show
that detD5uDu for N51,3 is reduced to the following:

uD (N51)u5LP1 ,

uD (N52)u5LU2b1M1 2b2P2

P1 M2
U1RIa1 a2

k1 k2
I 2

,

uD (N53)u5LU ~2b1!2P1 ~2b2!2M2 ~2b3!2P3

2b1M1 2b2P2 2b3M3

P1 M2 P3

U
1R~b1

22b3
2!~b2

22b3
2!Ia1 a2

k1 k2
I 2 P3

b3

1R~b2
22b1

2!~b3
22b1

2!Ia2 a3

k2 k3
I 2 P1

b1

1R~b1
22b2

2!~b3
22b2

2!Ia1 a3

k1 k3
I 2 M2

b2
,

~14!
03660
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L5 i N2(N21)/2 )
i 51,N

a i* )
j 51,N, j . i

~b j2b i !
N11~b j1b i !

3,

R524L
) b i

)
j , i

~b j2b i !

, ~15!

and Pi5ua i u21uk i u21uz i u2,Mi5ua i u21uk i u22uz i u2,a i5ai /
l i ,k i5bi / l i ,z i5ci /mi ,

l i5A )
j 51,N jÞ i

~b i1b j !, mi5A )
j 51,N jÞ i

ub i2b j u.

~16!

Here i•••i2 means the squared absolute of a determina
Similarly, detQi5uQi u are reduced to the following compac
forms:
uQ0
(N51)u52iLb1a1b1* , uQ1

(N51)u52iLb1a1c1* ,

uQ0
(N52)u522iLUb1a1b1* b2a2b2*

P1 M2
U,

uQi
(N52)u522iLUd i ,1b1a1c1* d i ,2b2a2c2*

P1 M2
U1 iRl iUa1 a2

k1 k2
UUd i ,1c1* d i ,2c2*

k1* k2*
U, i 51,2,

uQ0
(N53)u52iLU b1a1b1* b2a2b2* b3a3b3*

2b1M1 2b2P2 2b3M3

P1 M2 P3

U12iRUb1
2a1 b2

2a2 b3
2a3

a1 a2 a3

k1 k2 k3

UUb1
2k1* b2

2k2* b3
2k3*

a1* a2* a3*

k1* k2* k3*
U , ~17!
6-4
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uQi
(N53)u52iLUd i ,1b1a1c1* d i ,2b2a2c2* d i ,3b3a3c3*

2b1M1 2b2P2 2b3M3

P1 M2 P3

U1 iRl i
~b1

22b3
2!~b2

22b3
2!

~b i1b3!b3
Ua1 a2

k1 k2
UUd i ,1c1* d i ,2c2*

k1* k2*
UP3

1 iRl i
~b2

22b1
2!~b3

22b1
2!

~b i1b1!b1
Ua2 a3

k2 k3
UUd i ,2c2* d i ,3c3*

k2* k3*
UP11 iRl i

~b1
22b2

2!~b3
22b2

2!

~b i1b2!b2
Ua1 a3

k1 k3
UUd i ,1c1* d i ,3c3*

k1* k3*
UM2

12iRl iUb1
2a1 b2

2a2 b3
2a3

a1 a2 a3

k1 k2 k3

UUd i ,1c1* d i ,2c2* d i ,3c3*

a1* a2* a3*

k1* k2* k3*
U , i 51,2,3.

Once again, MSC solutions are given by Eq.~13! and using these formulas. These formulas, Eqs.~14! and~17!, areour main
result of present paperand we discuss their applications to specific circumstances in the following sections. We che
correctness of these formulas using the symbolic packageMAPLE. Another package,MATHEMATICA , was used to draw variou
figures forc i in the following sections, as well as to check thatc i indeed satisfy the coupled NLSE~1!.

III. COMPLETELY INCOHERENT MSC

Completely incoherent MSCs can be obtained by choosing a trivial solutionc (B)50 in the linear equation~6!, and
integrating it with a result

C~x,z,l5 ib j !5S aj5 l ja j5 l j exp~b jXj !,

bj5 l jk j50

0

¯

cj5mjz j5mjexp~2b jXj !

0

¯

D , Xj5~x2 ib j z!/2. ~18!

Here we omit constants of integration, for simplicity.~Their effect can be incorporated by takingx→x2xj ,z→z2zj .) Note
that we takebj5k j50 in this case. It is now easy to obtainN3N matricesD andQi @omitting theL factor in Eq.~14!#:

uDu}U 2 coshb1x 2 sinhb2x 2 coshb3x •••

2~2b1!sinhb1x 2~2b2!coshb2x 2~2b3!sinhb3x •••

2~2b1!2coshb1x 2~2b2!2sinhb2x 2~2b3!2coshb3x •••

¯

2~2b1!N21cosh~or sinh! •••

U ~19!

and

uQi u}2i ~2 ! [N(N21)]/2U 2 coshb1x 2 sinhb2x 2 coshb3x •••

2~2b1!sinhb1x 2~2b2!coshb2x 2~2b3!sinhb3x •••

2~2b1!2coshb1x 2~2b2!2sinhb2x 2~2b3!2coshb3x •••

¯

d i ,1b1a1c1* d i ,2b2a2c2* d i ,3b3a3c3* •••

U , i 51,N. ~20!
f

In this case,Q050 and

c050, c i5 i
uQi u
uDu

, i 51,N. ~21!
03660
These are completely incoherent MSCs of theN-coupled
NLS system. Note thatQi is different from D only in
the last row. More explicitly, c0

(N51)50, c1
(N51)5

2b1 sechb1x exp(2ib1
2z) for N51 case. The results o
6-5
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higher N (N.1) cases can be expressed in more comp
forms using identities of hyperbolic trigonometric function
For example, uD (N52)u52(b11b2)cosh(b12b2)x12(b2
2b1)cosh(b11b2)x. These results are well known from pre
vious researches@2,21#. These types of multisoliton solution
expressed as the ratio of two determinants were famou
the world of single-component NLSEs@26#.

IV. PARTIALLY COHERENT MSC

These cases arise when the backgroundc (B) is given as
an M soliton of single-component NLSE. It then describe
case ofM1N solitons, interacting coherently through thec0
component. Here we consider theM51 case, for simplicity.
For a one-soliton background, we takec (B)5
2b0 sech(b0x)exp(2ib0

2z). Then the integration of linea
equations~4! givesC(x,z,l5 ib j ) in Eq. ~5! with

aj5 i l j~b01b j !sj expb jXj2 i l jb0 sechb0x

3@sj exp~b0x1b jXj !1r j exp~2 ib0
2z2b jXj !#,

~22!
bj5 i l j~b01b j !r j exp~2b jXj !2 i l jb0 sechb0x

3@sj exp~ ib0
2z1b jXj !1r j exp~2b0x2b jXj !#,

cj5mj exp~2b jXj1t j !,

wheresj , r j , andt j are arbitrary constants andl j , mj , and
Xj are defined in Eqs.~16! and~18!. Explicit construction of
soliton complexes can be done using Eqs.~13!, ~14!, and

FIG. 1. Starting one-soliton backgroundc (B) with b052.8.
03660
ct
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a

~17!. Though the expression looks still complicated, one c
evaluate theN-soliton complexes with the help of the com
puter algebra system. Figure 1 shows a starting solu
c (B), which is the well-known one-soliton of sech type. Fi
ure 2 shows results ofN51 formulas in Eqs.~13!, ~14!, and
~17! with parametersb052.8,b152.9,r 151,s150, andt1
50. These figures show characteristic solitons of two bri
pair. In this case, there is no oscillating behavior. Figure
shows results ofN51 calculation with the same paramete
as in Fig. 2 excepts151. A noticeable difference betwee
Figs. 2 and 3 is the oscillating behavior in Fig. 3. This is d
to the interference of two terms in Eq.~22! ~one is coupled to
r 1 and the other is coupled tos1.! of the linear equations
Generally, an oscillating behavior appears when two ter
each coupled tor i and si , are used to construct the solito
complexes. It is impossible to find these oscillating behavi
using the method of stationary ansatz. Figure 4 show res
for the N52 case using parameters ofr i5si51 and i
51,2. It also shows the oscillating behavior. Solitons
these partially coherent MSCs interact with each other coh
ently through thec0 component. Finally, Fig. 5 shows th
MSC of theN53 case. It has fourc i , i 50,3 components.
This would be the most complex MSCs found upto now.

V. MSCs ON A CONTINUOUS WAVE BACKGROUND

A dark soliton arises as a localized dip in a continuo
wave ~cw! background,c (B)5b0 exp(2ib0

2z/2)/2. It was
known that the cw background has intrinsic instabilities@30#,
and the physical application of solutions in this section
limited to special circumstances, see, for example, Ref.@31#.
An explicit integration of the linear equation~4! with this
c (B) givesC(x,z,l5 ib j ) in Eq. ~5! with

aj5 l j exp~2 ib0
2z/4!

3H sj

M j 2
exp~Ab j

22b0
2Xj !1

r j

M j 1
exp~2Ab j

22b0
2Xj !J ,

bj5 l j exp~ ib0
2z/4!$sjM j 2exp~Ab j

22b0
2Xj !

1r jM j 1 exp~2Ab j
22b0

2Xj !%, ~23!

cj5mj exp~2b jXj1t j !,
FIG. 2. Two-component MSC that is constructed by adding one soliton on a soliton background. Parameters areb052.8, b152.9, r 1

51, s150, andt150.
6-6
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FIG. 3. Two-component MSC showing an oscillating behavior. Parameters areb052.8, b152.9, r 151, s151, andt150.
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where sj ,r j , and t j are arbitrary constants andM j 6

5(Ab j1b06Ab j2b0)/A2b0. With these elementary solu
tions, the rest of the step is just the same as in the prev
sections.

Here, we give explicit expressions forc0 ,c j , j 51,N for
N51 case, which are obtained using Eqs.~13!, ~14!, ~17!,
and ~23!. Expressions forc0 ,c j , j 51,N for N52 case are
given in the Appendix. For theN51 case~for simplicity, we
take t150)

c05
1

2U
exp~2 ib0

2z/2!$b0
2 exp~2b1x!22r 1

2b0b1

3exp~2Ab1
22b0

2x!22s1
2b0b1 exp~Ab1

22b0
2x!

14r 1s1@2ib1Ab1
22b0

2 sin~b1Ab1
22b0

2z!

2~2b1
22b0

2!cos~b1Ab1
22b0

2z!#%,

c152
A2b0b1

U
exp@2b1x/22 i ~b0

212b1
2!z/4#

3$s1~Ab11b01Ab12b0!exp~Ab1
22b0

2X1!

1r 1~Ab11b02Ab12b0!exp~2Ab1
22b0

2X1!%,

~24!

U5b0 exp~2b1x!12r 1
2b1exp~2Ab1

22b0
2x!

12s1
2b1 exp~Ab1

22b0
2x!14b0r 1s1 cos~b1Ab1

22b0
2z!.

The intensity profiles experience a periodic beating due
the interference between terms coupled tor 1 ands1, respec-
03660
us

o

tively. A stationary solution is obtained by takings151,r 1

50, for instance. Then they become the famous dark-br
pair of soliton solution@8#,

c052
b0

2
exp~2 ib0

2z/2!tanhS b11Ab1
22b0

2

2
~x1x0! D ,

c152
Ab1

2
~Ab11b01Ab12b0!exp@2 i ~b0

212b1
2

12b1Ab1
22b0

2!z/4#sechS b11Ab1
22b0

2

2
~x1x0! D ,

~25!

where a constantx0 satisfies

expS b11Ab1
22b0

2

2
x0D 5A2b1 /b0.

We draw some MSCs on a cw background with the h
of symbolic packageMATHEMATICA . Figure 6 showsN51
MSC on a cw background with parametersb052.8, b1
52.9, r 151, s150, and t150. These figures are those o
characteristic dark-bright pair. Figure 7 shows the results
N51 MSC with the same parameters as in Fig. 6 exc
s151. As expected, there is an oscillating behavior. We n
are
FIG. 4. Three-component MSC which is ‘‘Darboux constructed’’ by adding two solitons on a soliton background. Parametersb0

52.8, b152.9, b253.1, r i5si51, t i50, andi 51,2.
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FIG. 5. Four-component MSC
which is Darboux constructed
by adding three solitons on a
soliton background. Parameter
are b051.8, b151.9, b252.1,
b352.2r i5si51, and t i50, i
51,2.
e
,

n
it

m
wo
nl
yp
io
t
o

n
th
-
e

ing

g
ur

han
ng-

pa-
the

tion
that it resembles the breather solution of single-compon
NLSE. Figure 8 showsN52 MSC on a cw background
having parametersr i5si51, and i 51,2. It also shows the
oscillating behavior. Finally, Fig. 9 shows anN53 MSC on
a cw background, having fourc i , i 50,3 components.

VI. CONCLUSION

In this paper, we use a Darboux transformation for co
structing MSC solutions of coupled NLSEs. A few explic
matrix determinants of small size the (N51,2,3 case! are
constructed from the large sparse matrices of the Cru
formula. Then MSCs are obtained by taking the ratio of t
newly obtained matrix determinants. Our method not o
reproduces known MSCs, but it can produce many new t
of MSCs. For example, MSCs having a pulsating behav
are constructed. Formulas ofN>4 could be conjectured, bu
the proof of them needs to calculate the determinant
N(N12)3N(N12) block matrices, which has not bee
carried out even with the help of symbolic packages. For
case of complexb i , i 51,N, there should appear more com
plex MSC solutions having soliton fusion or breakup ph
nomena@32#.
03660
nt

-

’s

y
e
r

f

e

-

Our method can be easily generalized to the defocus
case. In this case, some minus signs in Eq.~13!, as well as in
bi and ci in Eq. ~5! produce correct MSCs of defocusin
NLSE. More detailed results will be reported elsewhere. O
method also works for more general background other t
the continuous wave background. An important case belo
ing to this is the cnoidal wave background@33#, which ap-
pears to have interesting applications@34#. Though we have
focused only on the generalized Manakov system in this
per, our method also applies to several other systems like
multicomponent self-induced transparency equation~SIT!
which shares the Darboux covariance property@35#.
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APPENDIX: NÄ2 MSC ON A BACKGROUND

Substitutingai ,bi ,ci , i 51,2 in Eq.~23! into N52 case
of Eqs.~14! and ~17!, we obtain
FIG. 6. N51 MSC on a cw background. Parameters areb052.8, b152.9, r 151, s150, andt150.
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uDu52
1

b0
2~b22b1!

$216b1b2~b1
21b2

222b0
2!C1C2132b1b2Ab1

22b0
2Ab2

22b0
2S1S22b0

2~b22b1!2E1E2

22b0~b2
22b1

2!„2b1~E224O2!C112b2~E114O1!C2…24b0
2~b2

22b1
2!~E2O11E1O2!

216~b2
2b0

21b1
2b0

222b1
2b2

2!O1O2132b1b2Ab1
22b0

2Ab2
22b0

2I 1I 2%,

uQ0u52i
b11b2

b0
2 exp~2 ib0

2z/2!$8ib0~b1Ab1
22b0

2O2I 12b2Ab2
22b0

2O1I 2!18b0~b2
22b1

2!O1O2

18b2@~b0
22b1

2!O11 ib1Ab1
22b0

2I 1#C228b1@~b0
22b2

2!O21 ib2Ab2
22b0

2I 2#C1

12b2b0~b2O22 iAb2
22b0

2I 2!E112b1b0~b1O12 iAb1
22b0

2I 1!E212b2b0
2E1C212b1b0

2E2C1%, ~A1!

uQ1u5 iA 2

b0
3b1Ab21b1

b22b1
exp~2b1x/21t12 ib1

2z/22 ib0
2z/4!$~Ab11b0H11Ab12b0J1!@8b0b1O212b0~b22b1!E2

28b2Ab2
22b0

2S218b2b1C2#1~Ab11b0H12Ab12b0J1!~28b2
2O218ib2Ab2

22b0
2I 228b2b0C2!%,

FIG. 7. N51 MSC on a cw background. Parameters areb052.8, b152.9, r 151, s151, andt150.
q.

When we taker 15r 250 ~no pulsating behavior! and
where

Ci5r isi coshAb i
22b0

2~x1ui !,

Si5r isi sinhAb i
22b0

2~x1ui !,

Ei5exp~2b ix12t i !, Oi5r isi cosb iAb i
22b0

2z,

I i5r isi sinb iAb i
22b0

2z,
03660
Hi5s1 exp~Ab i
22b0

2Xi !/21r 1 exp~2Ab i
22b0

2Xi !/2,
~A2!

Ji5s1 exp~Ab i
22b0

2Xi !/22r 1 exp~2Ab i
22b0

2Xi !/2.

Here ui5 ln(si /ri)/Ab i
22b0

2, i 51,2. uQ2u is obtained from
the expression foruQ1u by exchanging 1↔2. Finally, c i , i
50,2 are obtained by substituting previous formulas into E
~13!.
FIG. 8. N52 MSC on a cw background. Parameters areb052.8, b152.9, b253.1, r i5si51, t i50, andi 51,2.
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FIG. 9. N53 MSC on a
cw background. Parameters a
b051.8, b151.9, b252.1, b3

52.2r i5si51, t i50, and i
51,2.
a
as
si5
A6

2
Ab0~b22b1!

b i~b21b1!
, i 51,2 ~A3!

and

b21Ab2
22b0

252~b11Ab1
22b0

2!

i.e., b25
8b1

223b0
218b1Ab1

22b0
2

4~b11Ab1
22b0

2!
, ~A4!

the above system reduces to

uDu58~b22b1!A cosh3 Dx,

uQ0u56ib0~b22b1!exp~2 ib0
2z/2!A coshDx,

uQ1u524iA3b1~Ab12b01Ab11b0!~b22b1!

3exp~2 iD2z2 ib0
2z/2!A coshDx sinhDx,

~A5!

uQ2u52iA3b2~Ab22b01Ab21b0!~b22b1!

3exp~24iD2z2 ib0
2z/2!A coshDx,
p

n.

03660
where A5exp((2b11Ab1
22b0

22b21Ab2
22b0

2)x/2) and
D5(b11Ab1

22b0
2)/2. With these results, we can obtain

N52 MSC on a continuous wave background, which h
two independent parametersb0 andb1 as following @2,18#.
@b2 in the expression should be substituted by Eq.~A4!.#

c05ccw1 i
uQ0u
uDu

52
1

4
exp~2 ib0

2z/2!b0~123 tanh2 Dx!,

c15 i
uQ1u
uDu

5
1

2
exp~2 iD2z2 ib0

2z/2!

3A3b1~Ab12b01Ab11b0!sechDx tanhDx,

~A6!

c25 i
uQ2u
uDu

52
1

4
exp~24iD2z2 ib0

2z/2!

3A3b2~Ab22b01Ab21b0!sech2 Dx.
-
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