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Systematic construction of multisoliton complexes

Kyoung Ho Had* and H. J. Shif’
IDivision of Information Science, Korea Nazarene University, Choongnam 330-718, Korea
2Department of Physics and Research Institute of Basic Science, Kyung Hee University, Seoul 130-701, Korea
(Received 29 October 2003; published 24 March 2004

We present a simple but powerful method for constructing multisoliton complexes of the coupled nonlinear
Schralinger equation. Our method is based on thekBand-Darboux transformation. A closed form of the
matrix determinant is given for multisoliton complexes, including the case of a nonvanishing background. We
explicitly work out the solutions of two-, three-, and four-component coupled nonlinear @ehes equations.
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[. INTRODUCTION MSCs on a background8,19, and MSCs in a sea of radia-
tion modes[20]. Collisions of MSCs are also investigated
Recently, there has been much interest in multisolitorand illustrated by numerical examplg&l]. The stability of
complexegMSCs. A MSC is a self-localized state, which is multicomponent solitary waves is studied in Rgg2] and a
a nonlinear superposition of several fundamental solitonsHirota bilinear method was used to find periodic solutions of
These objects have been studied extensively both experimeneupled NLSE423,24].
tally and theoretically; see the review and references therein These general analytical solutions were used to obtain
[1,2]. These include short pulses in multicore optical fiberssome important characteristics of MSCs in a simple form.
[3], multicomponent Bose-Einstein condensates at zero tendue to its physical relevance, more explicit closed expres-
peraturg 4], and gap soliton§5], to name a few. In particu- sions of MSCs having a complex behavior should be re-
lar, researches on spatial incoherent solitons propagating iuired. In this paper, we present a simple, but powerful MSC
photorefractive materials induced new interest in M$Z)s  finding technique that would serve well for finding more
In general, a MSC can be described by a set of coupledeneral solutions of MSCs. The method, which is based on
nonlinear Schrdinger equation$NLSES. Various solutions the Darboux transformatio(DT), uses the Crum’s formula,
to these equations, including soliton solutidés7] and pe- and avoids the stationary ans§g5—29. When a DT is ap-
riodic solutions, have been fourl8—10], especially for the plied once in a given starting solution, it gives a new solution
two-component case. Explicit solutions of equations havingf (a soliton plus starting solutignTo create a MSC on a
components larger than two are appearing one after anothetarting solutiorny(5) (we restrict that a starting solution has
[2,8,11]. These solutions are mainly obtained using the fact ¢, component only, we apply anN iteration of the DT on
that MSCs are stationary, which reduces the problem of the/®). In this course, we adjust that each added soliion,
coupled NLSEs to a set of ordinary differential equations. =1,N, has two components only, and; . The final result
In some special cases, like wave propagation in a homas a closed determinantal form of MSC solutions in nonvan-
geneous medium having a Kerr-type nonlinear response, thehing as well as vanishing backgrounds. Our method applies
corresponding NLSEs are found to be integrable. They arevhen the coupled NLSE is integrable. Clearly, the integra-
then described by bility from the Kerr-like nonlinearity is an approximation.
N Nevertheless, the existence of exact solutions helps us to
. . understand the phenomenon. The general idea should be
I2= _"?i‘/’k_z'izo |¢il*, k=ON. (@) valid for any particular nonlinearity.
We explain the method in Sec. Il and give a closed form
The simplest cas&l=1 (two-component cagevas known of the MSC forN=1,3 equations in Eql). We demonstrate
as the Manakov equatiofl2,13. The inverse scattering the method for the completely incoherent MSCs in Sec. Il
method (ISM) [14] was used by Manakov for finding one Partially coherent MSCs are discussed in Sec. IV. Incoherent
soliton solution. The ISM is a powerful tool in constructing MSCs on a background are explained in Sec. V. The validity
solitons, but the high-level mathematical technicality of theof our formulas is verified independently by a computer al-
method makes it difficult for finding more complex solu- gebra software. An explicit result is given in the Appendix
tions; multisolitons, and/or solitons, having nonvanishingwhich calculates MSCsy;, i=0,2, of anN=2 coupled
backgrounds. Thus, most solutions of the MSC have beehlLSE on a background.
constructed in the form of stationary solutions, or using a
linear superposition principlgl5]. Some important results
obtained in these ways are solitary waves solutiph#], Il. METHOD

MSC solutions of partially coherent solitons in R¢L7], A. Associated linear system for a MSC

We first bring the coupled NLS equatigh) into a matrix

*Email address: khan@kornu.ac.kr form in terms of N+2)X(N+2) matricesg, T and E
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0 o Y1 -+ iy Here c; lies in the j+2th row, which will add a soliton
o having ay; co_mponen_(as We_II as aj, component through _
0 bj) to a starting solution using the DT. In other words, it
E=| —¢; 0 --- o1, satisfies
iz 0 .. 0 —y®* 0
0o —-i2 0 -~ 0 0
=l 0 0 =-i2 0-- 0 |, 2 | &t
0 0 0o —ir2
0
such that \
o . i/2 0 o 0 ) a
d,E=— J5E+2E%E. €] o —i2 o0 ... 0 b,
One can readily check that the components of &.are 0 0o —i/l2 0--- 0 0
indeed equivalent to the coupled NLS equation in EQ. vig| - >
[12,28,29. In this paper, we focus on the case when the ]
group velocity dispersion is abnormal, or the waveguide is Cj
self-focusing. One advantage of using matrices is that we can 0
write down the associated linear equatitwax pair) 0 0 o o -ir/ |
(I +E+NT)¥=0, (9,+EE—d,E—NE—N2T)¥=0, (4) —0 ®)

where\ is an arbitrary complex number afd(x,z,\) is an

(N+1)-component vector. What this linear equation means

is the following: if the matrixE satisfies Eq(3), one can find .

a nonzero solution? by integrating Eq.(4). On the other ~and similarly for thed, part of Eq.(4). Here, we take\,

hand, if there is a nontrivial satisfying Eq.(4), thena,s,% = I/B; to be purely imaginary, which makes MSCs stationary

should be the same as3,¥ for any value of\, which when (or moving Wlth a c_ertam velocifyand pulsating _perlodl—

coupled with Eq(4), requires thaE should satisfy Eq(3).  cally along their trajectories. These parametgysi=1N
With this prerequisite, we now introduce the dkaund- are related to the intensities of MSC solitons.

Darboux transformation, in a form suiting our purpose

[26,28,29. First, we choose a particular solution far E

=E® with yo=¢®,yy=---=yy=0, which later de- B. Crum’s formula for MSCs

scribes asymptotic backgrounds for the MSCs. For cases of ) )
completely incoherent MSCs, one may simply chogé® Now Crum'’s formula of the Darboux transformation gives
=0. For cases of partially coheretgspecially iny, com- @ MSC solution in terms o&; ,b;,c;, i=1N described in

poneni MSCs, one can take(® = Ym » Where gy, is an Sec. Il A as the solution of Eq4) or (6). A generalized form

mrsoliton solution of a single-component NLSE fgg. For ~ of Crum’s formula for multi-componeritHermitian symmet-

MSCs on a background, one may choose plane wave soltiic space NLSE was first introduced in Ref28]. See more

tions for () which can be easily obtained. details in Ref.[29]. Define anN(N+2)xN(N+2) block
Now, with a choice off from the previous step, we inte- matrix D, which is composed oN? block matrix A;; such

grate the linear equatiof¥) for pure imaginary cases; that

=iB;j, (Bj=realj=1N), in a form

8 Arr Ag, Ain

b; o=| - ] @

0 Ans Ans A
Y(x,zA=iB)=| " |. (5)

Cj

0

where the N+ 2)X (N+2) block matrices\ ,,,, are given by
the product of two block matrices;
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a, —br O —-cr 0
b, a 0 ... (ig)N~m 0 0
0 1 0 (—igy)N"m 0
0 O 0 1 o .- 0 0 (—igyyNm ...
Am=| .. ) - ®
cn O a0 0
0 0

The first matrix of the right part of Eq8) has four nondiagonal elemerits, by , c,, andc;; which are located in the second
row, the second column, the+2nd row, and then+2nd column, respectively. Explicithp) for N=2 becomes

iBia;  iBib7 iBicT 0 iBoa, 1PBb3 0 iB2C5

iBib; —iBia] 0 0 iBb, —iBya; 0 0
i81Cq 0 —ip.al 0 0 0 —iB, 0
v 0 0 0 —iB; iB,Cy 0 0 —ipLa; | ©
a, —b7 —ci 0 a, —b3 0 —c3
by ay 0 0 b, a; 0 0
c 0 at 0 0 0 1 0
0 0 0 1 Cy 0 0 as

Let Q;, i=0,N be the matrix obtained by replacing the¢ 1st row of the matrixD with the row matrix
[(iﬁl)Nal _(_iﬂl)Nb,{ _(_iﬂl)NCf 0 - (iBNa, _(_iﬂz)sz 0 _(_iﬂz)NC§ 1. (10
Explicitly, Qo andQ, for N=2 becomes

iBia; iBbI  iBiCT 0 iBoa, iBob3 0 iB2C5

-Bla, pibY  picT 0 —pa, by 0 pic)
i81C, 0 —iB.a3 0 0 0 —iB, 0
Q-2 0 0 0 —iB; 1B,C, 0 0 —iBya; a1
0 a, —b¥ —cf 0 a, —by 0 —c5 |’
b, ay 0 0 b, a; 0 0
C1 0 ay 0 0 0 1 0
0 0 0 1 (o 0 0 as
iBia; BT iBict O iBoay  1Bab; 0 iByC;
iBiby —ip.ad 0 0 iBb, —ipa; O 0
- Bia iby ict 0 -—pBja, pib5 O 3¢5
Q-3 0 0 —iBy iBsc, 0 0 —iBal 1
! a; —b¥  —c& 0 a, -b% 0 -—c& |
by ay 0 0 b, a; 0 0
¢ 0 a* 0 0 0 1 0
0 0 0 1 Cy 0 0 a;

Then a MSC solution for the coupled NLS equation is given by
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detQq _detQ; where

— B i = i=
Yo= 1 +|detD’ i IdetD’ i=1N. (13

For a mathematical proof of these statements, we refer the

reader to the referend®8] where the proof is given in a ,

general context using the Darboux transformation and the L=iNMN"D2T] of [ (8-g)N" 4B+ )3
generalized Crum’s formula. I=IN O J=IN, g

C. Reduction of detD and detQ;

It can be seen thaD and Q;, i=0N are large sparse
matrices having many zeros. We find the determinants of H
them are reduced to more compact forms, which should be Bi
helpful for various applications. From now on, we taBe R=—-4L———, (15
<B,<---<By without loss of generality. We first show I1 3-8
that deD =|D| for N=1,3 is reduced to the following: I=<i
IDN=Y[=LP,,
(N=2)| _ —BiM1  —B,P; a;  ap z 5 5 5 5 5 5
e - T VI Rt PR i and P =| |2+ |12+ 62 Mi = |as] 2+ | i 2 =2/
2 2 2 li ki=b /i, gi=ci/m;,
(=B1P1 (=B2)My (—B3)°P3
IDN=3)|=L| —pB1M; = B2P> —BsM3
Py M> P3
2
ay ap°P I-=\/ (Bi+By), m-:\/ [T 188l
+R(BI- B (B3~ B3) = b V=i =Vt A
K1 K| B3 (16)

a; ag 2P1

+R(B5—BD(B5—BD)

Kz K3 ﬁ_l
2 M 2 .
+FR(B2— B (82— ) @1 as] Mp Here |- - -||* means the squared absolute of a determinant.
VPR P2 e ks B Similarly, detQ;=|Q;| are reduced to the following compact

(14 forms:

|IQN=Y|=2iL Bya.b%, |QN"Y|=2iLBa,ct,

BiaibT  Brasb;

N2 =-2iL
Q) ‘ )
(N=2y o0 |81B181CT 61 2B235C; | a2 SiaCl 6.3
|Qi |=—2iL RI, N L | =12,
1 M, K1  K2|| K1 K2
2 2 2

Biaby  Brah;  Biazh; ,3%“1 Bgaz 3%“3 1K1 Bk B3k

QM= =2iL| —BiM1  —B2P; —B3M3| +2iR| a as aj a; az |, 17)
Py M, P3 K1 K2 K3 KT K3 K§
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* * *
6i1B121C7 6 2B28,C5 O 3B3a3C3

_ (Bi=B5(B5—B3)|ar asl|diaCT 6L
QNI =2iL| —BM —B,P —BsM3 | +iRl, P
| i | Pl 1 M2 2 P3 3 i (ﬁ|+ﬁ3)ﬁ3 Ky Ky K;_c K~;2¢ 3
1 2 3
iRl (B5=B(B5—BD |az ag||dics 63 . (BI=B3)(B5—B5) |ar ag||discl &3
' (Bit BB Ky K3|| K5 kT (Bt BB K1 Ks|| K} K3 2
,35011 1350‘2 ,3%013 81C1 8L 6 L3
+2|R|| aq Ay a3 afic C(; Of; s |=1,2,3
K1 Ko K3 KI K; K;

Once again, MSC solutions are given by Efp) and using these formulas. These formulas, Et@). and(17), areour main

result of present papeand we discuss their applications to specific circumstances in the following sections. We check the
correctness of these formulas using the symbolic packeageE. Another packageyATHEMATICA , was used to draw various
figures fory; in the following sections, as well as to check thiatindeed satisfy the coupled NLSH).

Ill. COMPLETELY INCOHERENT MSC

Completely incoherent MSCs can be obtained by choosing a trivial solytBh=0 in the linear equatior{6), and
integrating it with a result

aj=lja;=I;exp B;X;),
bj=1,x;=0
0
W(x,z,\=iB))= o Xj=(x—iB2)/2. (19
Cj=m;j=mexp— X))
0

Here we omit constants of integration, for simplicitfheir effect can be incorporated by takirg-x—x;,z—z—z;.) Note
that we takeb; = «;=0 in this case. It is now easy to obtaiiX N matricesD andQ; [omitting theL factor in Eq.(14)]:

2 coshBx 2 sinhB,x 2 coshB3x
2(—By)sinhB;x 2(—Ba)coshBx  2(— B3)sinhBax
|D|o 2(— B1)%coshB;x 2(—B,)?sinhBox  2(— B3)2coshBax - - (19
2(—B1)N " *coshorsinh

and
2 coshB;x 2 sinhByx 2 coshB3x
2(=p1)sinhBix  2(—By)coshBx  2(— B3)sinhBsx
Qi 2i(—)INN-DI2} 2(—B1)%coshB,x  2(—By)%sinhBx  2(—B3)°coshBax -+ | | j=1N. (20)
8 1812,C1 81 28285C5 5 3B3a3C3

In this caseQy,=0 and These are completely incoherent MSCs of tNecoupled

NLS system. Note tha); is different from D only in
Jo—0 1//-=iM 1N (o the last row. More explicitly, D=0, y{" V=
o= YiTipp o — By sechB xexp(—iB2) for N=1 case. The results of
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FIG. 1. Starting one-soliton backgroumd® with 8,=2.8.

PHYSICAL REVIEW E69, 036606 (2004

(17). Though the expression looks still complicated, one can
evaluate theN-soliton complexes with the help of the com-
puter algebra system. Figure 1 shows a starting solution
#®, which is the well-known one-soliton of sech type. Fig-
ure 2 shows results df=1 formulas in Eqs(13), (14), and

(17) with parameters3,=2.8,8,=2.9,r,=1,5,=0, andt;

=0. These figures show characteristic solitons of two bright
pair. In this case, there is no oscillating behavior. Figure 3
shows results oN=1 calculation with the same parameters
as in Fig. 2 exceps;=1. A noticeable difference between
Figs. 2 and 3 is the oscillating behavior in Fig. 3. This is due
to the interference of two terms in EQ2) (one is coupled to

r, and the other is coupled t,.) of the linear equations.
Generally, an oscillating behavior appears when two terms,
each coupled to; ands;, are used to construct the soliton

higher N (N>1) cases can be expressed in more compacgomplexes. Itis impossible to find these oscillating behaviors
forms using identities of hyperbolic trigonometric functions. Using the method of stationary ansatz. Figure 4 show results

For example, |[D(N=2)|=2(B;+ B,)coshB;—B)x+2(5,

for the N=2 case using parameters of=s;=1 and i

vious researchd®,21]. These types of multisoliton solutions these partially coherent MSCs interact with each other coher-

expressed as the ratio of two determinants were famous iintly through they, component. Finally, Fig. 5 shows the

the world of single-component NLSHEZ26].

IV. PARTIALLY COHERENT MSC

These cases arise when the backgroyff is given as

MSC of theN=3 case. It has fouy;,i=0,3 components.
This would be the most complex MSCs found upto now.

V. MSCs ON A CONTINUOUS WAVE BACKGROUND

anM soliton of single-component NLSE. It then describes a A dark soliton arises as a localized dip in a continuous

case ofM + N solitons, interacting coherently through tiig
component. Here we consider thve=1 case, for simplicity.
For a one-soliton background, we takey(®=

—[Bosech(Gox)exp(—iB%z). Then the integration of linear

equations(4) gives ¥ (x,z,\A=ig;) in Eq. (5) with
a;=ilj(Bo+ Bj)s; expB;X;—il | By sechBox
X[sj expl Box+ BiX;) +T; exp—i B5z— BiX))],
bj=ilj(Bo+ Bj)rjexp(— B;X;) —il By sechBox 22
X[sj expli B5z+ BX;) +1j expl — Box— BiX))],
c;=m; exp(— B;Xj+t),

wheres;, r;, andt; are arbitrary constants arg, m;, and
X; are defined in Eqg16) and(18). Explicit construction of
soliton complexes can be done using E(k3), (14), and

S
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AW AR

R
R
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R

4

wave (cw) background, (8= B, exp(—iBsz/2)/2. It was
known that the cw background has intrinsic instabilifig@],
and the physical application of solutions in this section is
limited to special circumstances, see, for example, 4.

An explicit integration of the linear equatiof@) with this
B givesW(x,z,\=ip;) in Eq. (5) with

aj=|; exp(—iB5z/4)
Sj r
x|, OXPVBT — BoXy) + g —expl — B~ BoX,)
b =1; expli B5z/4){s;M; _exp(\ B} — BoX))
+1iMj ., exp(— VB — BoX)} (23

Cj:mj eXF(_Bij‘f‘tj),

N
N
SRR
TR
K

\
W

FIG. 2. Two-component MSC that is constructed by adding one soliton on a soliton background. Parameigts2a8eB,=2.9,r,

=1,s,=0, andt;=0.
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FIG. 3. Two-component MSC showing an oscillating behavior. Parameterg a€.8, 3,=2.9,r,=1,s,=1, andt;=0

where s;,rj, and t; are arbitrary constants anil;. tively. A stationary solution is obtained by takirg=1,,
= (\/,8J + Bo* J,BJ ,80)/\/2,8 With these elementary solu- =0, for instance. Then they become the famous dark-bright
tions, the rest of the step is just the same as in the previoysair of soliton solutior{ 8],

sections.

Here, we give explicit expressions fgg,;, j=1N for
N=1 case, which are obtained using E¢E3), (14), (17), +./B2= 32
and (23). Expressions foij,#;, j=1N for N=2 case are Yo=— %exp(—iﬁéz/Z)tanr(W(erxo)
given in the Appendix. For thBl=1 case(for simplicity, we
taket,;=0)

1 VB1 .
Yo= 515 EX — 1 B5ZI2){ B3 expl — B1X) — 2r o Y1=— 5~ (VB Bot V1~ Bo)exd —i(B5+21

X exp — VBT~ BoX) — 251 BoB1 eXp(\ B — BoX)
+4r15,[ 21 B4\ B — B3 SN B1\ B — B52)

/g2 — g2
+2,81\/,821—[307)z/4]5ec?{W(on) ,

(25)
— (283~ B3)cod BB B3 11,
J2 where a constant, satisfies
Yr=— % expl — Bix/2—i(B5+2p7)2/4]
X{s1(VB1+ Bo+ VB1— Bo)exp(\B1— BX1) BitNB1—B
1 1 0 1 0 1 0™ ex 1 . 1 OX0 _ m
+11(VB1+ Bo— VB1— Bo)exp — VB~ BoX1)},
(24)
We draw some MSCs on a cw background with the help
U= Boexp— B1X)+2r2Bexp — \/ﬁzl—ﬁozx) of symbolic packagevATHEMATICA . Figure 6 showdN=1
MSC on a cw background with parametefy=2.8, 8,
+2578, exp(VBi— BoX) +4Bor 18, cod B1VBI—B5z).  =2.9,r,=1,5,=0, andt;=0. These figures are those of

characteristic dark-bright pair. Figure 7 shows the results of
The intensity profiles experience a periodic beating due titN=1 MSC with the same parameters as in Fig. 6 except
the interference between terms coupled t@nds;, respec- s;=1. As expected, there is an oscillating behavior. We note

FIG. 4. Three-component MSC which is “Darboux constructed” by adding two solitons on a soliton background. Paramesgrs are
= 28, B1=2.9, ﬁ2:3.1, I’i :Si = 1, ti :0, andi =
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FIG. 5. Four-component MSC
which is Darboux constructed
by adding three solitons on a
soliton background. Parameters
are Bo=1.8, B;=1.9, B,=2.1,
,83=2.2ri:si:1, and ti=0, i
=1,2.

that it resembles the breather solution of single-component Our method can be easily generalized to the defocusing
NLSE. Figure 8 showsN=2 MSC on a cw background, case. In this case, some minus signs in @8), as well as in
having parameters;=s;,=1, andi=1,2. It also shows the b; andc; in Eq. (5 produce correct MSCs of defocusing
oscillating behavior. Finally, Fig. 9 shows &=3 MSC on  NLSE. More detailed results will be reported elsewhere. Our
a cw background, having foug; , i =0,3 components. method also works for more general background other than
the continuous wave background. An important case belong-
ing to this is the cnoidal wave backgroufi@3], which ap-
VI. CONCLUSION pears to have interesting applicatidrdg]. Though we have
focused only on the generalized Manakov system in this pa-
In this paper, we use a Darboux transformation for conper, our method also applies to several other systems like the
structing MSC solutions of coupled NLSEs. A few explicit multicomponent self-induced transparency equati&iT)

matrix determinants of small size th&\€1,2,3 caseare  which shares the Darboux covariance propég].
constructed from the large sparse matrices of the Crum’s

formula. Then MSCs are obtained by taking the ratio of two
newly obtained matrix determinants. Our method not only
reproduces known MSCs, but it can produce many new type
of MSCs. For example, MSCs having a pulsating behavior This work was supported by Korea Research Foundation
are constructed. Formulas BE=4 could be conjectured, but Grant(KRF-2003-070-C00011

the proof of them needs to calculate the determinant of

N(N+2)XN(N+2) block matrices, which has not been

carried out even with the help of symbolic packages. For the APPENDIX: N=2 MSC ON A BACKGROUND

ACKNOWLEDGMENT

case of comple);, i=1N, there should appear more com-
plex MSC solutions having soliton fusion or breakup phe- Substitutinga; ,b;,c;, i=1,2 in Eq.(23) into N=2 case
nomeng 32]. of Egs.(14) and(17), we obtain

&R \ \\\\\\ \\ \
\\\\\\\\\\\\\\\\\\\\\\\‘\
\\

RN

‘\\\\\\\\\ \\\\\‘\\ N

FIG. 6. N=1 MSC on a cw background. Parameters gge-2.8, 8,=2.9,r,=1,s,=0, andt,;=0
036606-8
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FIG. 7. N=1 MSC on a cw background. Parameters @ge-2.8, 8,=2.9,r,=1,s,=1, andt;=0.

1
ID|=- m{— 1681 B2( B3+ B3~ 283)C1Co+ 328182\ B2 — BN B3~ B3S1S,— B B2~ B1)*E4Es

—2B0(B5— B1)(2B1(Ey—40,)Cy+2B,(E1+401)Cy)— 485(B5— B1) (E201 + E10))
—16(B3B5+ B2 85— 282 85)010,+ 3281 82\ B1— Bo\ B~ B3l 1l o},

+
|Qo|=2i%gﬁexrx—iﬁéz/2>{8iﬁo<ﬂwﬁi—ﬁéozl1—32 B5— 85011 2) +8Bo( 85— 1) 010,

+8B2[(B5— B1) 0111 BV BT~ Byl 11C2—~ 8B4 (B3~ B2)O2+iB2VB5— Byl 21Ca
+2B2B0(B202— 1V B5— Byl 2)E1+2B1B0(B101—iNBi— Bol 1) Ea+ 2B8285E1Co+ 281 B5ELC1l, (A1)
2 +
|Q4|=i \/,6,_8,31 \/%exﬁ_ﬁlxmﬁql_iﬁiZ/Z_iIB(Z)Z/4){(VI31+ﬁoH1+ VB1—= Bod1)[8BoB102+2B0(B2—B1)E;
— 8B,V B3~ ByS,+8B281Co]+ (VB1+ BoH1— V,Bl_ﬁoJl)(_85302+8iﬁ2\/,32_ﬂo|2_8,32,30C2)}:

where Hi=s1 exp(\B; — B3Xi)/2+ 1 exp(— VB — B5Xi)/2,
(A2)
Ci=r;s coshyB— B5(x+u;),

Si=r;s; sinhy B2 — B5(x+u;),

Ji=s; exp( VBT BaXi) 12—ty exp( — BP— BaXi)/2.

Here u,=In(s /r;)/\B?— B2, i=1,2. |Q,| is obtained from

Ei=exp(—Bix+2t), O;=r;s;cospiB—B5z, the expression fofQ,| by exchanging +2. Finally, ¢;, i
=0,2 are obtained by substituting previous formulas into Eq.
: (13.
li=r;s; sin BB — B5z, When we take ;=r,=0 (no pulsating behavigrand

FIG. 8. N=2 MSC on a cw background. Parameters gye=2.8, 8,=2.9, 8,=3.1,r;=s5=1,1,=0, andi=1,2.
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S_@ BolBoBy) A3)

"2 NV Bi(Bat By

and

B2+ NBs—Bo=2(B1+B1—Bo)
_8B1-35+8B1VB1—Bo

ie. , (Ad)
TN =)
the above system reduces to
|D|=8(B,— B1)Acoslt Ax,
| Qol =6i Bo( B2~ Br)exp( —i B5z/2)A coshAx,
|Qul=—4i V3B1(VB1— Bo+ VB1+ Bo) (B2 B1)
X exp(—iA%z—iB52/2) A coshAx sinhAXx,
(A5)

|Qz|=2i V3B2(VBa— Bot+ VBa+ Bo) (B2~ B1)
X exp(— 4iA%z—i B3z/2) A coshAx,

PHYSICAL REVIEW E69, 036606 (2004

FIG. 9. N=3 MSC on a
cw background. Parameters are

BO:l.S, 31:1.9, 32:2.1, 33
:Z.Z’i:Sizl, ti=0, and i
=12

where A=exp((=B1+VB1— By~ B2+ B2~ Bo)x/2) and
A=(B1+ \/ﬁlz—,Boz)/Z. With these results, we can obtain a
N=2 MSC on a continuous wave background, which has
two independent parametefg and 3, as following[2,18].

[ B, in the expression should be substituted by &gt).]

1
o= Pow i %I - ZeXp(—i,BSZ/Z)BO(l—B tantf Ax),

1
=i %: Eexp(—iAzz—iBgz/Z)

X 3B1(VB1— Bo+ VB1+ Bo)sechAx tanhAx,
(A6)

1
=i %z - Zexp(—4iA2z—iﬂgz/2)

X\3Bo(VBa— Bo+ B2+ Bo)sech Ax.
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